Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Am J Hematol ; 99(5): 1005-1007, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38410879

RESUMO

IRF2BP1 breaked in the middle of exon 1 at the c.322 position and fused with RARA intron 2 which is located at 3717 bp upstream of its exon 3. The fusion produced a new intron by forming a paired splicing donor GT at 9 bp downstream of RARA breakpoint and acceptor AG at the 5' end of RARA exon 3. The IRF2BP1::RARA fusion gene leads a fusion transcript involving IRF2BP1 exon 1 and RARA exon 3, linked by a 9-bp fragment derived from RARA intron 2. The patient with IRF2BP1::RARA has same clinical features of APL.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Cromossomos Humanos Par 17 , Éxons/genética , Leucemia Promielocítica Aguda/genética , Proteínas de Fusão Oncogênica/genética , Receptores do Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/genética , Translocação Genética
2.
Proc Natl Acad Sci U S A ; 121(7): e2311803121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38330015

RESUMO

Chronic kidney disease (CKD) is characterized by a gradual loss of kidney function and affects ~13.4% of the global population. Progressive tubulointerstitial fibrosis, driven in part by proximal tubule (PT) damage, is a hallmark of late stages of CKD and contributes to the development of kidney failure, for which there are limited treatment options. Normal kidney development requires signaling by vitamin A (retinol), which is metabolized to retinoic acid (RA), an endogenous agonist for the RA receptors (RARα, ß, γ). RARα levels are decreased in a mouse model of diabetic nephropathy and restored with RA administration; additionally, RA treatment reduced fibrosis. We developed a mouse model in which a spatiotemporal (tamoxifen-inducible) deletion of RARα in kidney PT cells of adult mice causes mitochondrial dysfunction, massive PT injury, and apoptosis without the use of additional nephrotoxic substances. Long-term effects (3 to 4.5 mo) of RARα deletion include increased PT secretion of transforming growth factor ß1, inflammation, interstitial fibrosis, and decreased kidney function, all of which are major features of human CKD. Therefore, RARα's actions in PTs are crucial for PT homeostasis, and loss of RARα causes injury and a key CKD phenotype.


Assuntos
Rim , Insuficiência Renal Crônica , Receptor alfa de Ácido Retinoico , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Fibrose , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/prevenção & controle , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo
3.
Ann Hematol ; 103(4): 1181-1185, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294534

RESUMO

Acute promyelocytic leukemia (APL) is a specific subtype of acute myeloid leukemia that is distinguished by the chromosomal translocation t(15;17)(q24;q21), which leads to the fusion of the promyelocytic leukemia (PML) gene with the retinoic acid receptor alpha (RARA). Recently, we identified a novel fusion gene in APL, RARA::ankyrin repeat domain 34C (ANKRD34C), identified its functions by morphological, cytogenetic, molecular biological and multiplex fluorescence in situ hybridization analyses, and demonstrated the potential therapeutic effect clinically and experimentally of all-trans retinoic acid (ATRA); the findings have important implications for the diagnosis and treatment of atypical APL.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/tratamento farmacológico , Hibridização in Situ Fluorescente , Tretinoína/uso terapêutico , Receptor alfa de Ácido Retinoico/genética , Proteínas de Transporte/genética , Translocação Genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
4.
Andrology ; 12(2): 338-348, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37290064

RESUMO

BACKGROUND: The ubiquitin ligase HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 is essential for the establishment and maintenance of spermatogonia. However, the role of HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 in regulating germ cell differentiation remains unclear, and clinical evidence linking HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 to male infertility pathogenesis is lacking. OBJECTIVE: This study aims to investigate the role of HUWE1 in germ cell differentiation and the mechanism by which a HUWE1 single nucleotide polymorphism increases male infertility risk. MATERIALS AND METHODS: We analyzed HUWE1 single nucleotide polymorphisms in 190 non-obstructive azoospermia patients of Han Chinese descent. We evaluated HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 regulation by retinoic acid receptor alpha using chromatin immunoprecipitation assays, electrophoretic mobility shift assays, and siRNA-mediated RARα knockdown. Using C18-4 spermatogonial cells, we determined whether HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 participated in retinoic acid-mediated retinoic acid receptor alpha signaling. We performed luciferase assays, cell counting kit-8 assays, immunofluorescence, quantitative real-time polymerase chain reaction, and western blotting. We quantified HUWE1 and retinoic acid receptor alpha in testicular biopsies from non-obstructive azoospermia and obstructive azoospermia patients using quantitative real-time polymerase chain reaction and immunofluorescence. RESULTS: Three HUWE1 single nucleotide polymorphisms were significantly associated with spermatogenic failure in 190 non-obstructive azoospermia patients; one (rs34492591) was in the HUWE1 promoter. Retinoic acid receptor alpha regulates HUWE1 gene expression by binding to its promoter. HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 participates in retinoic acid/retinoic acid receptor alpha signaling pathway and regulates the expression of germ cell differentiation genes STRA8 and SCP3 to inhibit cell proliferation and reduce γH2AX accumulation. Notably, significantly lower levels of HUWE1 and RARα were detected in testicular biopsy samples from non-obstructive azoospermia patients. CONCLUSIONS: An HUWE1 promoter single nucleotide polymorphism significantly downregulates its expression in non-obstructive azoospermia patients. Mechanistically, HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 regulates germ cell differentiation during meiotic prophase through its participation in retinoic acid/retinoic acid receptor alpha signaling and subsequent modulation of γH2AX. Taken together, these results strongly suggest that the genetic polymorphisms of HUWE1 are closely related to spermatogenesis and non-obstructive azoospermia pathogenesis.


Assuntos
Azoospermia , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Meiose , Azoospermia/genética , Receptor alfa de Ácido Retinoico/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Tretinoína , China , Proteínas Supressoras de Tumor/genética
5.
Obesity (Silver Spring) ; 32(1): 120-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37873741

RESUMO

OBJECTIVE: The adipose tissue-liver axis is a major regulator of the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Retinoic acid signaling plays an important role in development and metabolism. However, little is known about the role of adipose retinoic acid signaling in the development of obesity-associated NAFLD. In this work, the aim was to investigate whether and how retinoic acid receptor alpha (RARα) regulated the development of obesity and NAFLD. METHODS: RARα expression in adipose tissue of db/db or ob/ob mice was determined. Rarαfl/fl mice and adipocyte-specific Rarα-/- (RarαAdi-/- ) mice were fed a chow diet for 1 year or high-fat diet (HFD) for 20 weeks. Primary adipocytes and primary hepatocytes were co-cultured. Metabolic regulation and inflammatory response were characterized. RESULTS: RARα expression was reduced in adipose tissue of db/db or ob/ob mice. RarαAdi-/- mice had increased obesity and steatohepatitis (NASH) when fed a chow diet or HFD. Loss of adipocyte RARα induced lipogenesis and inflammation in adipose tissue and the liver and reduced thermogenesis. In the co-culture studies, loss of RARα in adipocytes induced inflammatory and lipogenic programs in hepatocytes. CONCLUSIONS: The data demonstrate that RARα in adipocytes prevents obesity and NASH via inhibiting lipogenesis and inflammation and inducing energy expenditure.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Adipócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Inflamação/metabolismo , Lipogênese/genética , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Tretinoína/metabolismo
7.
J Mol Endocrinol ; 72(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930232

RESUMO

There is increasing interest in retinoic acid (RA) as a regulator of the complex biological processes underlying the cognitive functions performed by the brain. The importance of RA in brain function is underlined by the brain's high efficiency in converting vitamin A into RA. One crucial action of RA in the brain is dependent on RA receptor α (RARα) transport out of the nucleus, where it no longer regulates transcription but carries out non-genomic functions. RARα, when localised in the cytoplasm, particularly in neuronal dendrites, acts as a translational suppressor. It regulates protein translation as a crucial part of the mechanism maintaining homoeostatic synaptic plasticity, which is characterised by neuronal changes necessary to restore and balance the excitability of neuronal networks after perturbation events. Under normal conditions of neurotransmission, RARα without ligand suppresses the translation of proteins. When neural activity is reduced, RA synthesis is stimulated, and RA signalling via RARα derepresses the translation of proteins and synergistically with the fragile X mental retardation protein allows the synthesis of Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors that re-establish normal levels of synaptic activity. Homoeostatic synaptic plasticity underlies many cognitive processes, so its impairment due to dysregulation of RA signalling may be involved in neurodevelopmental disorders such as autism, which is also associated with FMRP. A full understanding of RA signalling control of homoeostatic synaptic plasticity may point to treatments.


Assuntos
Disfunção Cognitiva , Tretinoína , Humanos , Tretinoína/farmacologia , Tretinoína/metabolismo , Receptores do Ácido Retinoico , Homeostase/fisiologia , Receptor alfa de Ácido Retinoico/genética , Plasticidade Neuronal
8.
Nutrients ; 15(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37686706

RESUMO

Vitamin A (VitA) is an important fat-soluble vitamin which plays an important role in cell growth and individual development. However, the effect of VitA on the repair process of muscle injury and its molecular mechanism are still unclear. In this study, VitA and RA were first added to the culture medium of differentiated cells. We then detected cell differentiation marker proteins and myotube fusion. Moreover, the effects of VitA on RARα expression and nuclear translocation were further examined. The results showed that VitA significantly promoted the differentiation of C2C12, and the expression of RARα was significantly increased. Furthermore, VitA was injected into skeletal muscle injury in mice. HE staining and Western Blot results showed that VitA could significantly accelerate the repair of skeletal muscle injury and VitA increase the expression of RARα in mice. This study provides a theoretical basis for elucidating the regulation mechanism of VitA-mediated muscle development and the development of therapeutic drugs for muscle diseases in animals.


Assuntos
Vitamina A , Vitaminas , Animais , Camundongos , Vitamina A/farmacologia , Músculo Esquelético , Western Blotting , Ciclo Celular , Receptor alfa de Ácido Retinoico/genética
9.
Immunity ; 56(9): 2054-2069.e10, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37597518

RESUMO

Ligation of retinoic acid receptor alpha (RARα) by RA promotes varied transcriptional programs associated with immune activation and tolerance, but genetic deletion approaches suggest the impact of RARα on TCR signaling. Here, we examined whether RARα would exert roles beyond transcriptional regulation. Specific deletion of the nuclear isoform of RARα revealed an RARα isoform in the cytoplasm of T cells. Extranuclear RARα was rapidly phosphorylated upon TCR stimulation and recruited to the TCR signalosome. RA interfered with extranuclear RARα signaling, causing suboptimal TCR activation while enhancing FOXP3+ regulatory T cell conversion. TCR activation induced the expression of CRABP2, which translocates RA to the nucleus. Deletion of Crabp2 led to increased RA in the cytoplasm and interfered with signalosome-RARα, resulting in impaired anti-pathogen immunity and suppressed autoimmune disease. Our findings underscore the significance of subcellular RA/RARα signaling in T cells and identify extranuclear RARα as a component of the TCR signalosome and a determinant of immune responses.


Assuntos
Doenças Autoimunes , Ativação Linfocitária , Humanos , Receptor alfa de Ácido Retinoico/genética , Membrana Celular , Receptores de Antígenos de Linfócitos T
10.
Genes Chromosomes Cancer ; 62(10): 617-623, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37283355

RESUMO

The promyelocytic leukemia-retinoic acid receptor-α (PML::RARA) fusion is the hallmark of acute promyelocytic leukemia (APL) and is observed in over 95% of APL cases. RARA and homologous receptors RARB and RARG are occasionally fused to other gene partners, which differentially affect sensitivity to targeted therapies. Most APLs without RARA fusions have rearrangements involving RARG or RARB, both of which frequently show resistance to all-trans-retinoic acid (ATRA) and/or multiagent chemotherapy for acute myeloid leukemia (AML). We present a 13-year-old male diagnosed with variant APL with a novel FNDC3B::RARB in-frame fusion that showed no response to ATRA but responded well to conventional AML therapy. While FNDC3B has been identified as a rare RARA translocation partner in ATRA-sensitive variant APL, it has never been reported as a fusion partner with RARB and it is only the second known fusion partner with RARB in variant APL. We also show that this novel fusion confers an RNA expression signature that is similar to APL, despite clinical resistance to ATRA monotherapy.


Assuntos
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Masculino , Humanos , Adolescente , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Translocação Genética , Tretinoína/uso terapêutico , Leucemia Mieloide Aguda/genética , Receptor alfa de Ácido Retinoico/genética , Genômica , Proteínas de Fusão Oncogênica/genética , Fibronectinas/genética
12.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239961

RESUMO

HNF4α, a member of the nuclear receptor superfamily, regulates the genes involved in lipid and glucose metabolism. The expression of the RARß gene in the liver of HNF4α knock-out mice was higher versus wildtype controls, whereas oppositely, RARß promoter activity was 50% reduced by the overexpression of HNF4α in HepG2 cells, and treatment with retinoic acid (RA), a major metabolite of vitamin A, increased RARß promoter activity 15-fold. The human RARß2 promoter contains two DR5 and one DR8 binding motifs, as RA response elements (RARE) proximal to the transcription start site. While DR5 RARE1 was previously reported to be responsive to RARs but not to other nuclear receptors, we show here that mutation in DR5 RARE2 suppresses the promoter response to HNF4α and RARα/RXRα. Mutational analysis of ligand-binding pocket amino acids shown to be critical for fatty acid (FA) binding indicated that RA may interfere with interactions of FA carboxylic acid headgroups with side chains of S190 and R235, and the aliphatic group with I355. These results could explain the partial suppression of HNF4α transcriptional activation toward gene promoters that lack RARE, including APOC3 and CYP2C9, while conversely, HNF4α may bind to RARE sequences in the promoter of the genes such as CYP26A1 and RARß, activating these genes in the presence of RA. Thus, RA could act as either an antagonist towards HNF4α in genes lacking RAREs, or as an agonist for RARE-containing genes. Overall, RA may interfere with the function of HNF4α and deregulate HNF4α targets genes, including the genes important for lipid and glucose metabolism.


Assuntos
Fator 4 Nuclear de Hepatócito , Hepatócitos , Receptores do Ácido Retinoico , Tretinoína , Animais , Humanos , Camundongos , Glucose , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Lipídeos , Receptor alfa de Ácido Retinoico/genética , Tretinoína/farmacologia , Receptores do Ácido Retinoico/genética
13.
J Immunother Cancer ; 11(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36918219

RESUMO

BACKGROUND: Immunotherapies targeting CD38 have demonstrated salient efficacy in relapsed/refractory multiple myeloma (MM). However, loss of CD38 antigen and outgrowth of CD38 negative plasma cells have emerged as a major obstacle in clinics. All-trans retinoic acid (ATRA) has been reported to upregulate CD38 expression, but the mechanism and adaptive genetic background remain unexplored. METHODS: The efficacy of ATRA in upregulating CD38 expression in MM cells is evaluated by flow cytometry. The interaction between NSD2 and the RARα is analyzed by immunoprecipitation, and the nuclear condensation of RARα is evaluated under laser confocal microscope. A graft model of MM is established in NOD.Cg-PrkdcscidIl2rgtm1Wjl /SzJ mice, and the tumor burden is assessed by in vivo fluorescence imaging. RESULTS: We report that ATRA upregulates MM cells CD38 in a non-linear manner, which is t(4;14) translocation dependent, and t(4;14) translocation-induced NSD2 shows positive correlation with ATRA-induced level of, but not with basal level of CD38 expression. Mechanistically, NSD2 interacts with the ATRA receptor, RARα, and protects it from degradation. Meanwhile, NSD2 enhances the nuclear condensation of RARα and modifies the histone H3 dimethylation at lysine 36 on CD38 promoter. Knockdown of NSD2 attenuates the sensitization of MM against ATRA induced CD38 upregulation. Translationally, ATRA is prone to augment the efficacy of anti-CD38 CAR T cells in NSD2high MM cells in vitro and in vivo. CONCLUSION: This study elucidates a mechanism of ATRA in regulating CD38 expression and expands the clinical potential of ATRA in improving immunotherapies against CD38 in patients with MM.Cite Now.


Assuntos
Mieloma Múltiplo , Receptores do Ácido Retinoico , Camundongos , Animais , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Imunoterapia Adotiva , Camundongos Endogâmicos NOD , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Tretinoína/metabolismo , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo
14.
Neurosci Lett ; 803: 137193, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-36924930

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental disease with an unclear underlying pathogenesis. Disruption of retinoic acid (RA)-retinoic acid receptor α (RARα) signaling and aberrant microglial activation were reported to be involved in the pathogenesis of ASD. However, the effect of RA-RARα signaling on microglial activation in ASD and the underlying mechanisms are unknown. Herein, we found inhibited RA-RARα signaling and increased microglial activation in valproic acid (VPA)-induced autism rats. Furthermore, we administered RA to VPA rats and found that RA ameliorated autism-like behaviors, inhibited microglial activation and normalized microglial polarization in VPA rats. Additionally, the expression levels of RARα and triggering receptor expressed on myeloid cells 2 (TREM2) were increased in the prefrontal cortex (PFC) of VPA rats given RA. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays confirmed that RARα can regulate the transcriptional activity of the TREM2 gene by binding to its promoter. We conclude that RA administration ameliorates autism-like behaviors in VPA rats by inhibiting microglial activation and normalizing microglial polarization through the regulation of TREM2 transcription by RARα.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Ratos , Animais , Tretinoína/farmacologia , Ácido Valproico/efeitos adversos , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Microglia/metabolismo , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Córtex Pré-Frontal/metabolismo
16.
Cells ; 11(20)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36291054

RESUMO

Retinoic acid signaling plays an important role in regulating lipid metabolism and inflammation. However, the role of retinoic acid receptor alpha (RARα) in atherosclerosis remains to be determined. In the current study, we investigated the role of macrophage RARα in the development of atherosclerosis. Macrophages isolated from myeloid-specific Rarα-/- (RarαMac-/-) mice showed increased lipid accumulation and inflammation and reduced cholesterol efflux compared to Rarαfl/fl (control) mice. All-trans retinoic acid (AtRA) induced ATP-binding cassette subfamily A member 1 (Abca1) and Abcg1 expression and cholesterol efflux in both RarαMac-/- mice and Rarαfl/fl mice. In Ldlr-/- mice, myeloid ablation of RARα significantly reduced macrophage Abca1 and Abcg1 expression and cholesterol efflux, induced inflammatory genes, and aggravated Western diet-induced atherosclerosis. Our data demonstrate that macrophage RARα protects against atherosclerosis, likely via inducing cholesterol efflux and inhibiting inflammation.


Assuntos
Aterosclerose , Colesterol , Dieta Ocidental , Macrófagos , Receptor alfa de Ácido Retinoico , Animais , Camundongos , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Inflamação/genética , Macrófagos/metabolismo , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Dieta Ocidental/efeitos adversos , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Camundongos Knockout
18.
J Mol Endocrinol ; 69(4): T69-T83, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36112505

RESUMO

Acute promyelocytic leukemia (APL) is associated with severe coagulopathy leading to rapid morbidity and mortality if left untreated. The definitive diagnosis of APL is made by identifying a balanced reciprocal translocation between chromosomes 15 and 17. This t(15;17) results in a fusion transcript of promyelocytic leukemia (PML) and retinoic acid receptor alpha (RARA) genes and the expression of a functional PML/RARA protein. Detection of a fused PML/RARA genomic DNA sequence using fluorescence in situ hybridization (FISH) or by detection of the PML/RARA fusion transcript via reverse transcriptase polymerase chain reaction (RT-PCR) has revolutionized the diagnosis and monitoring of APL. Once confirmed, APL is cured in over 90% of cases, making it the most curable subtype of acute leukemia today. Patients with low-risk APL are successfully treated using a chemotherapy-free combination of all-trans retinoic acid and arsenic trioxide (ATO). In this review, we explore the work that has gone into the modern-day diagnosis and highly successful treatment of this once devastating leukemia.


Assuntos
Arsênio , Leucemia Promielocítica Aguda , Trióxido de Arsênio/uso terapêutico , Humanos , Hibridização in Situ Fluorescente , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Proteínas Nucleares/genética , Proteína da Leucemia Promielocítica/genética , Receptores do Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/genética , Fatores de Transcrição/metabolismo , Translocação Genética , Tretinoína/uso terapêutico , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
19.
Blood ; 140(22): 2358-2370, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35984905

RESUMO

Cancer cell heterogeneity is a major driver of therapy resistance. To characterize resistant cells and their vulnerabilities, we studied the PLZF-RARA variant of acute promyelocytic leukemia, resistant to retinoic acid (RA), using single-cell multiomics. We uncovered transcriptional and chromatin heterogeneity in leukemia cells. We identified a subset of cells resistant to RA with proliferation, DNA replication, and repair signatures that depend on a fine-tuned E2F transcriptional network targeting the epigenetic regulator enhancer of zeste homolog 2 (EZH2). Epigenomic and functional analyses validated the driver role of EZH2 in RA resistance. Targeting pan-EZH2 activities (canonical/noncanonical) was necessary to eliminate leukemia relapse-initiating cells, which underlies a dependency of resistant cells on an EZH2 noncanonical activity and the necessity to degrade EZH2 to overcome resistance. Our study provides critical insights into the mechanisms of RA resistance that allow us to eliminate treatment-resistant leukemia cells by targeting EZH2, thus highlighting a potential targeted therapy approach. Beyond RA resistance and acute promyelocytic leukemia context, our study also demonstrates the power of single-cell multiomics to identify, characterize, and clear therapy-resistant cells.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Tretinoína/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Receptor alfa de Ácido Retinoico/genética , Receptores do Ácido Retinoico/genética , Fatores de Transcrição/genética , Proteínas Nucleares/genética
20.
Hepatol Commun ; 6(10): 2665-2675, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35852305

RESUMO

All-trans retinoic acid (AtRA) is an active metabolite of vitamin A that influences many biological processes in development, differentiation, and metabolism. AtRA functions through activation of retinoid acid receptors (RARs). AtRA is shown to ameliorate hepatic steatosis, but the underlying mechanism is not well understood. In this study, we investigated the role of hepatocyte RAR alpha (RARα) in mediating the effect of AtRA on hepatosteatosis in mice. Hepatocyte-specific Rarα-/- (L-Rarα-/- ) mice and their control mice were fed a chow diet, high-fat diet (HFD), or a high-fat/cholesterol/fructose (HFCF) diet. Some of the mice were also treated with AtRA. Loss of hepatocyte RARα-induced hepatosteatosis in chow-fed aged mice and HFD-fed mice. AtRA prevented and reversed HFCF diet-induced obesity and hepatosteatosis in the control mice but not in L-Rarα-/- mice. Furthermore, AtRA reduced hepatocyte fatty acid uptake and lipid droplet formation, dependent on hepatocyte RARα. Our data suggest that hepatocyte RARα plays an important role in preventing hepatosteatosis and mediates AtRA's effects on diet-induced hepatosteatosis.


Assuntos
Receptores do Ácido Retinoico , Vitamina A , Animais , Dieta , Ácidos Graxos , Frutose , Camundongos , Receptores do Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/genética , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...